Mark scheme – Transition Elements

Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5–6 marks) All three tests are covered in detail, with at least six of B to H identified correctly and equations mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) 6 All three tests are covered with at least four of B to H identified correctly. Some attempt at writing equations, but with several omissions or incorrect formulae. 6 There is a line of reasoning presented with some structure. The information gresented is relevant and supported by some evidence. 3.4× Donly two tests covered with at least two of B to H identified correctly, and little attempt at writing equations. 7.1 There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 D marks No response or no response worthy of credit. 1	Indicative scientific points may include: Identification of unknowns Can be identified within labelled equation. B is FeSO4 OR Iron(II) sulfate • Test 1: Fe ²⁺ present • Test 2: SO4 ²⁻ present D is Fe(OH) ₂ OR [Fe(H ₂ O) ₄ (OH) ₂] OR iron(II) hydroxide G is BaSO4 OR barium sulfate C is CrC/ ₃ OR chromium(III) chloride • Test 1: Cr ³⁺ present • Test 3: C/ ⁻ present E is Cr(OH) ₃ OR [Cr(H ₂ O) ₃ (OH) ₃] OR chromium(III) hydroxide F is [Cr(NH ₃) ₆] ³⁺ H is silver chloride OR AgC/ Equations D: [Fe(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow Fe(OH) ₂ + 6H ₂ O OR Fe ²⁺ + 2OH ₋ \rightarrow Fe(OH) ₂ OR [Fe(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow [Fe(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow [Fe(H ₂ O) ₆] ²⁺ + 2NH ₃ \rightarrow [Fe(H ₂ O) ₆] ²⁺ + 2NH ₃ \rightarrow Fe(OH) ₂ + 4H ₂ O + 2NH ₄ ⁺ E: [Cr(H ₂ O) ₆] ³⁺ + 3OH ⁻ \rightarrow Cr(OH) ₃ + 6H ₂ O OR Cr ³⁺ + 3OH ⁻ \rightarrow [Cr(H ₂ O) ₆] ³⁺ + 3NH ₃ \rightarrow [Cr(H ₂ O) ₆] ³⁺ + 3NH ₃ \rightarrow [Cr(H ₂ O) ₆] ³⁺ + 3NH ₃ \rightarrow Cr(OH) ₃ + 3NH ₄ ⁺ OR [Cr(H ₂ O) ₆] ³⁺ + 3NH ₃ \rightarrow Cr(OH) ₃ + 3NH ₄ ⁺ OR

			$\begin{array}{l} \textbf{F} : [Cr(H_2O)_6]^{3+} + 6NH_3 \rightarrow \\ [Cr(NH_3)_6]^{3+} + 6H_2O \ \textbf{OR} \\ Cr(OH)_3 + 6NH_3 \rightarrow [Cr(NH_3)_6]^{3+} + \\ 3OH^- \ \textbf{OR} \\ [Cr(H_2O)_3(OH)_3] + 6NH_3 \rightarrow \\ [Cr(NH_3)_6]^{3+} + 3H_2O + 3OH^- \\ \textbf{G} : Ba^{2+} + SO4^{2-} \rightarrow BaSO_4 \\ \textbf{H} : Ag^+ + C/^- \rightarrow AgC/ \end{array}$
	Total	6	
2	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Comprehensive explanation of the terms, ligand and coordination number and ligand substitution AND 3D diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes AND Ligand substitution illustrated with a balanced equation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Explanation of the terms, ligand and coordination number and ligand substitution with some errors or omissions AND Diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes OR A 3D wedged diagram of a suitable example of 6 OR 4 coordination OR A diagram of a suitable example of 6 OR 4 coordination AND ligand substitution illustrated with an equation OR Ligand substitution illustrated with a balanced equation There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1-2 marks) Explanation of some terms: ligand, coordination number and ligand substitution with some errors or omissions. AND A suitable example of a complex ion OR Ligand substitution illustrated with an equation with some errors<	6 (AO 1.1× 4) (AO 2.1× 2)	Indicative scientific points may include: <u>Terms</u>

Equation for ligand substitution

e.g. $[Cu(H_2O)_6]^{2+} + 4Cl^ \rightarrow CuCl_4^{2-} + 6H_2O$ $[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow$ $[Cu(NH_3)_4(H_2O)_2]^{2+} +$ $4H_2O$

NOTE: A clear and logically structured response would link shapes with some of: coordination number, names of shapes, connectivity, involvement of lone pairs, bond angles, etc. (not inclusive)

ALLOW minor slips

NOTE: Levels and the mark within a level is a 'best-fit', not perfection

Examiner's Comments

This question was assessed by level of response (LoR). The question required candidates to demonstrate their knowledge and understand of some important terms used in transition metal chemistry.

Level 3 candidates showed complete definitions of ligand, coordination number and ligand substitution, supported by suitable equations with clear diagrams of complex ions. The responses were concise with 3D diagrams of 6- and 4-coordinate complex ions displayed with wedges, correct connectivity to ligand atoms and showing the role of lone pairs in the formation of the coordinate bonds. 4coordination was shown as either or both of tetrahedral (usually CuCl_{4²⁻}) or square planar (e.g. platin). Ligand substitution was accompanied by a correct balanced equation, most commonly between [Cu(H₂O₆]²⁺ and NH₃.

				Level 2 candidates usually gave definitions of ligand, coordination number and ligand substitution. There was usually a balanced equation for ligand substitution and one correct 3D diagram. A second diagram often had an unsuitable shape for the complex ion chosen (often $CuC/_4^{2-}$ shown as square planar).
				Level 1 candidates did produce definitions, but these were often incomplete. There was usually an attempt to show a 3D diagram or equation, but these often contained unsuitable examples.
				This question rewarded the candidates who had learnt their chemistry and the levels enabled the amount of knowledge and understanding to be assessed. The question discriminated well.
		Total	6	
3	i	(0.00200 mol dm ⁻³ solution gives) a large titre which leads to a small (percentage) error / uncertainty √	1 (AO 3.4)	ALLOW (0.0200 mol dm ⁻³ solution gives) a small titre which leads to a large (percentage) error / uncertainty Assume 'it' means dilute solution ALLOW 13.50 cm ³ gives a lower percentage error than 1.35 cm ³ <u>Examiner's Comments</u> Only a very small minority of candidates appreciated that a larger titre reduces percentage error in titre values. Most erroneously described a reading of 1.35 cm ³ as being less accurate than a reading of 13.5(0) cm ³ . The accuracy of these is equal in the same scaled apparatus.
	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 301 mg award 5 marks $n(MnO_4^-) = \frac{13.50}{1000} \times 0.00200 = 2.7(0) \times 10^{-5}$ (mol) \checkmark	5 (AO 2.8 ×5)	ALLOW ECF throughout ALLOW working to 3SF minimum throughout Common errors
L				602 (mg) (not dividing by 2) = 4

		$n(Fe^{2+})$ (in.25.0 cm ³) = 2.7(0) × 10 ⁻⁵ × 5 = 1.35 × 10 ⁻⁴ (mol) \checkmark $n(Fe^{2+})$ (in 250 cm ³) = 1.35 × 10 ⁻⁴ × 10 = 1.35 × 10 ⁻³ \checkmark Mass C ₁₂ H ₂₂ FeO ₁₄ in 2 tablets		marks 37.7 (using 55.8 instead of 445.8) = 4 marks
		= 1.35 × 10 ⁻³ × 445.8 = 0.6018 (g) √ Mass C ₁₂ H ₂₂ FeO ₁₄ in 1 tablet = 301 (mg) AND to 3 SF √		Last mark involves dividing by two and converting g to mg. These steps may be seen earlier Examiner's Comments Many candidates coped well with this multi-step calculation. The common errors were: • determining the mass of C12H22FeO14 in two tablets instead of just one tablet as required in the question • determining the mass of Fe in a tablet instead of the mass of
				 C₁₂H₂₂FeO₁₄ failing to convert from grams to milligrams
	i i	A: Mass Fe = $\frac{180 \times 55.8}{151.8} = 66 \text{ mg}$ B: Mass Fe = $\frac{210 \times 55.8}{169.8} = 69 \text{ mg}$	1 (AO 3.1	ALLOW correct working if iron supplement is not named
	i	Iron supplement: B provides more Fe per tablet √	×1)	ALLOW iron(II) fumarate or C4H2FeO4
		Total	7	
		Coordinate bond mark O₂ (coordinately or datively) bonds with Fe²+/Fe(II)/Fe/Iron √ Ligand substitution mark	3 (AO 1.1 ×2)	ALLOW names or symbols of ligands ALLOW H ₂ O/CO/CO ₂ (coordinately or datively) bonds with Fe ²⁺ /Fe(II)/Fe/Iron ALLOW oxygen donates electron
4		(When required) O_2 is replaced by H_2O OR CO_2 OR O_2 is replaced by CO OR H_2O OR CO_2 is replaced by $O_2 \checkmark$ <i>Ligand strength mark</i> CO forms strong(er) bonds (than $O_2) \checkmark$		pair to OR binds with Fe ²⁺ /Fe(II)/Fe/Iron DO NOT ALLOW Fe ³⁺ ALLOW other words for replaced
			(AO	

				2.1 ×1)	 ALLOW K_{stab} for CO (much) higher (than for O₂) ALLOW CO bonds irreversibly OR CO is a strong(er) ligand IGNORE affinity Examiner's Comments The key chemistry that candidates needed to discuss in their response was as follows: O₂ molecules forming coordinate bonds with and Fe²⁺ ions in haemoglobin. O₂ molecules being replaced by another ligand (e.g. H₂O or CO) CO ligands forming very strong coordinate bonds The mark scheme allowed 'oxygen binding' but candidates did need to specify what the oxygen was binding to. Loose terminology, such as CO having a 'greater affinity' should be avoided.
			Total	3	
5	а	i	[Cr(NH₃)₀]³+(aq) √	1 (AO 1.1)	IGNORE state symbols Examiner's Comments Most candidates knew the correct formula. There was some confusion with ammoniacal copper ions and [Cr(NH ₃) ₄ (H ₂ O) ₂] ²⁺ was a frequently seen incorrect answer.
		ii	$CrCI_3(aq) + 3NaOH(aq) \rightarrow Cr(OH)_3(s) + 3NaCI(aq)$ or $Cr^{3+}(aq) + 3OH^{-}(aq) \rightarrow Cr(OH)_3(s) \checkmark$ state symbols required	1 (AO 2.8)	$\begin{array}{l} \textbf{IGNORE} \text{ square brackets around} \\ \textbf{precipitate formulae} \\ \textbf{ALLOW} \\ [Cr(H_2O)_6]^{3+}(aq) + 3OH^{-}(aq) \\ \rightarrow Cr(OH)_3(H_2O)_3(s) + 3H_2O(l) \\ \textbf{ALLOW} 'hybrid' equations, \\ Eg Cr^{3+}(aq) + 3NaOH(aq) \rightarrow \\ Cr(OH)_3(s) + 3Na^{+}(aq) \\ [Cr(H_2O)_6]^{3+}(aq) + 3OH^{-}(aq) \rightarrow \\ Cr(OH)_3(s) + 6H_2O(l) \\ [Cr(H_2O)]_6^{3+}(aq) + 3NaOH(aq) \rightarrow \\ \end{array}$

				Candidates should avoid incorrect connectivity between the ligand and the central metal ion. Candidates should be taught which atom within the ligand supplies the lone pair to form the coordinate bond. In this case oxygen has lone pairs, not hydrogen as suggested by the candidate in the bonding involving the bottom left hand ligand.
	iv	CrO₄ ^{2−} √	1 (AO 3.1)	IGNORE compounds e.g. Na ₂ CrO ₄ Examiner's Comments Very few candidates correctly identified the CrO_4^{2-} ion here. Candidates should be aware that oxidation of $Cr(OH)_3$ produces CrO_4^{2-} (which can then be acidified to produce $Cr_2O_7^{2-}$).
	v	orange √	1 (AO 1.1)	Examiner's Comments Invariably, the answer given by candidates here was either orange or green, indicating some knowledge of the colours of chromium ions. Those who stated orange received credit
t) i	(1s²)2s²2p ⁶ 3s²3p ⁶ 3d² √	1 (AO 1.1)	ALLOW upper case D, etc. and subscripts, e.g. 3D ₂ If included, ALLOW 4s ⁰ Examiner's Comments Many candidates did not realise that when transition metal ions are formed, the first electrons removed from atoms are the 4s electrons and so wrote 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ² .
	i i	Explanation of colours VO^{2+} goes to V^{3+} (green) AND then V^{3+} goes to V^{2+} (violet) \checkmark	3 (AO 3.2	

			Explanation using E [≏] values	×2)	
			(E° -of) system 4 (VO ²⁺ /V ³⁺) is more positive / less negative than system 2 (Fe ²⁺ /Fe) OR		IGNORE 'lower/higher' ALLOW reverse argument
			(E° -of) system 3 (V ³⁺ /V ²⁺ ,) is more positive / less negative than system 2 (Fe ²⁺ /Fe) \checkmark	(AO 3.2×	System 2 more negative than system 4 etc
			Equilibrium shift related to E [∞] values	1)	E = (+)0.78 V for system 4 + system 2 reaction
			More positive/less negative system 4 (VO ²⁺ /V ³⁺) shifts right AND		OR <i>E</i> = (+)0.18 V for system 3 +
			More positive/less negative system 3		system 2 reaction
			(V ³⁺ /V ²⁺) shifts right		For shifts right' ALLOW (VO ²⁺) is reduced OR gains electrons
					(maybe seen as an equation) AND 'For shifts right'
					ALLOW (V^{3+}) is reduced OR gains electrons
					(maybe seen as an equation) IGNORE Fe oxidised
					Examiner's Comments
					Most candidates did not state that the direction of reaction of
					redox equilibria is dependent on the relative negativity/positivity of the standard electrode potentials.
					Higher ability candidates described two reductions of the relevant vanadium ions to end up with V ²⁺ ions.
		i i	$Fe + 4H^+ + 2VO^{2+} \rightarrow Fe^{2+} + 2H_2O + 2V^{3+}$	1 (AO 2.8)	IGNORE state symbols ALLOW multiples ALLOW '⇔'
			Total	11	
					ALLOW Fe(OH) ₃ (H ₂ O) ₃
					IGNORE state symbols
				2	Examiner's Comments
6	а	i	A: Fe(OH)₃(s) √ B: Ag₂S(s) √√	AO3.	Most candidates were given 1 or 2 marks for this part. The black
				1742	precipitate B (Ag ₂ S) was identified correctly more often the orange precipitate A , which was
					often shown as Fe(OH) ₂ instead of Fe(OH) ₃ or Fe(OH) ₃ (H ₂ O) ₃ . Significantly, identification of B

			required interpretation of new information whereas A required knowledge of transition element chemistry.
			ALLOW no electron transfer
			Examiner's Comments
i	Student is incorrect AND No oxidation numbers change OR example, e,g, Fe stays as +2 √	1 AO3. 2	Just over half the candidates identified that the student was incorrect, and that the reaction is not redox. Candidates were expected to provide some evidence to support their statement, in terms of no oxidation number changes. Some candidates claimed that the reaction was not redox because only sulfur changed oxidation number, suggesting a misunderstanding of redox.
			ALLOW multiples e.g. $[Fe(H_2O)_6]^{2^+} + \frac{1}{2}Cl_2 \rightarrow [Fe(H_2O)_6]^{3^+} + Cl^-$
			ALLOW $2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow$ $2[Fe(H_2O)_5OH]^{2+} + 2HCl$ OR $2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow$ $2[Fe(H_2O)_5CI]^{2+} + 2H_2O$
			NOTE : equation MUST be balanced by charge and oxidation number
i	$2[Fe(H_2O)]^{2+} + C_2 \rightarrow 2[Fe(H_2O)_6]^{3+} + 2C^{-} \checkmark$	1 AO3.	IGNORE state symbols
i i	$2[re(120)] + 6i_2 \rightarrow 2[re(120)_6] + 20i_4$	A03. 1	Examiner's Comments
			Candidates found this equation extremely difficult with only a small number of candidates writing a correct equation. The problem lies with balancing the oxidation numbers and charges. Many wrote an equation with a 1:1 ratio or 1:2 ratio for $[Fe(H_2O)_6]^{2+}$: Cl ₂ . An equation balanced in oxidation number and charge required a 2:1 ratio.
			When writing equations for redox reactions, candidates are

				recommended to check that oxidation changes and charges are balanced as well as atoms.
				ALLOW multiples, e.g. $2\frac{1}{2}$ H ₂ S + MnO ₄ ⁻ + 3H ⁺ → Mn ²⁺ + $2\frac{1}{2}$ S + 4H ₂ O ALLOW equation with S ² , e.g. $5S^{2-}$ + 2MnO ₄ ⁻ + 16 ^{H+} → 2Mn ²⁺ + 5S + 8H ² O
		5H₂S + 2MnO4 ⁻ + 6H ⁺ → 2Mn ²⁺ + 5S + 8H₂O √√		IGNORE extra electrons for 1st mark
	i v	1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5 \text{ H}_2\text{S} + 2 \text{ MnO4}^- \dots \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ S} \dots \dots$	2 AO3. 1×2	Examiner's Comments Candidates needed to interpret the information in the flowchart and to use this as the basis for their redox equation.
		2nd mark Complete correct balanced equation		The clue that a yellow solid is a product proved to be very difficult to interpret as being sulfur. The equation then required H ₂ O to be added as the other product. Candidates found this equation difficult and relatively few correct equations were seen.
				As with (iii), many equations were not balanced by oxidation number or charge. Some candidates omitted this part entirely.
		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.		Indicative scientific points may include:
b		Level 3 (5–6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND 9H ₂ O There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND 9H ₂ O.	6 AO1. 2×2 AO3. 1×2 AO3. 2×2	 Formula of C, D, E, F and G C: Fe(NO₃)₃•9H₂O OR FeN₃O₉•9H₂O D: FeN₃O₉ OR Fe(NO₃)₃ E: Fe₂O₃ F: NO₂ G: O₂ 9H₂O
		There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.		Examples of evidence $n(H_2O) = \frac{0.486}{18.0} = 0.027 \text{ (mol)}$

Level 1 (1–2 marks) Reaches a simple conclusion to determine the correct formulae of some of C, D, E, F, G AND 9H ₂ O.	$0.027 : 0.003 = 1 : 9 \rightarrow 9H_2O$ $n(F) = \frac{270 - 54}{24000} = \frac{216}{24000} = 0.009($
 There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit. 	$M(E) = 55.8 \times 2 + 16.0 \times 3 =$ 159.6 $M(F) = \frac{0.414}{0.009(00)} = 46 \text{ (g mol}^{-1}\text{)}$
	G : oxygen linked to relighting glowing split
	NOTE: Equations could include evidence e.g $Fe(NO_3)_3 \cdot 9H_2O \rightarrow Fe(NO_3)_3 + 9H_2O$ $FeN_3O_9 \cdot 9H_2O \rightarrow FeN_3O_9 + 9H_2O$ $2Fe(NO_3)_3 \rightarrow Fe_2O_3 + 6NO_2 + 11/_2O_2$
	Examiner's Comments
	This question presented a practical scenario in which candidates were asked to identify 5 unknown chemicals. There are many routes that lead to correct identifications of the unknowns.
	Most candidates identified G as oxygen and made some headway towards identifying C and D by determining that 9 waters of crystallisation were present in C . The formulae of C
	and D sometimes followed but many candidates found it difficult to link 9H ₂ O to their formulae. The best responses showed the nitrate ion separately in the formula, e.g. Fe(NO ₃) ₃ , but many
	showed the empirical formula instead, e.g. FeN ₃ O ₉ .
	Gas G (NO ₂) proved to be the most difficult unknown to identify as it required two pieces of data for its determination.
	There were some very competent attempts at writing equations, with the decomposition of compound D in Stage 2 to form E , F and G being the most difficult.

7

			Exemplar 6 is a Level 3
			response. The candidate has first identified C and D , having first
			determined the 1:9 molar ratio of C : H ₂ O. The candidate then
			writes the correct equation for
			Stage 1, using NO ₃ for the nitrate ion. The candidate then identifies
			E, F and G using a methodical
			approach with clear working throughout. Finally, the candidate
			writes the correct equation for the reaction in Stage 2. This is an
			excellent Level 3 response, given
			6/6 marks.
			Exemplar 6
			<u>sign 1 n= 0.486 = 0.027 sets</u> 18 0.00300 : 0.027
			coparticl varial of orbital corpord: Fe N_3O_4 . D \Rightarrow Fe(NO3),
			$\begin{array}{c} C \geqslant \ \mbox{Fe}(NO_3)_3 \cdot \ \mbox{9H}_2O \\ \hline \ \mbox{Fe}(NO_3)_3 \cdot \ \mbox{9H}_2O \\ \hline \ \ \mbox{Fe}(NO_3)_3 \cdot \ \ \mbox{9H}_2O \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
			$\frac{\text{Fe}(NO_3)_3}{0.003} \text{Fe}_2O_3(4) + F + (2)$
			$ \begin{array}{c} \overline{h_2 0_3} \\ \overline{h_2 0_3}$
			Additional answer space if required. $strong_3$ $cn = 54$ 2.25×10^{-3}
			24000 G= 02 G => because it - glowing up
			270-54 = 216 n= 216 = 9 × 10 ⁻³ 24000
			$\frac{H_{C} = M_{-2}}{P} \frac{0.414}{9 \times 10^{-3}} \frac{46}{L^{-3}} \frac{NO_2}{L^{-3}} \frac{2}{14}$
			$F = NO_2$
			$\frac{\partial^2 q e^2}{2 \operatorname{Fe}(NO_3)_3} \longrightarrow \operatorname{Fe}_2O_3 + 6 \operatorname{NO}_2 + \operatorname{J}_2^0O_2$
	Total	12	
			ALLOW reverse equation: $[CoCl_4]^{2^-} + 6H_2O \rightleftharpoons [Co(H_2O)_6]^{2^+}$
			+ 4Cl⁻ but take care for subsequent
			explanations
	Equation		IGNORE state symbols (even if wrong)
i	$[Co(H_2O)_6]^{2+} + 4Cl^- \rightleftharpoons [CoCl_4]^{2-} + 6H_2O$ OR $[Co(H_2O)_6]^{2+} + 4HCl \rightleftharpoons [CoCl_4]^{2-} + 6H_2O + 4H^+ \checkmark$	1	For [CoCl4] ²⁻ ,
			ALLOW CoCl4 ²⁻ , (CoCl4) ²⁻
			For other representations, contact TL
			Examiner's Comments

Г	 <u> </u>			
				In this part, candidates needed to apply their knowledge and understanding of ligand substitution and equilibrium to a novel situation. The best equations used CI ⁻ ions to form CoCl4 ²⁻ . Some candidates used HCI instead and then H+ was often omitted in the equation. As with 2b, candidates are recommended to check that their completed equations are balanced.
	i i	Equilibrium shift • equilibrium (shifts) to right at high temperature/100°C • OR equilibrium shifts to left at low temperature/0°C √ CARE: Direction of shift depends on direction of equilibrium equation from 2c(i). Either look back or see the equation copied at bottom of 2c(ii) marking zone. Enthalpy change • Endothermic √	2	Mark independently ALLOW suitable alternatives for 'to right' e.g. towards products OR in forward direction OR 'favours the right' ORA for 'to left' Temperature required but ALLOW 'in ice for low temperature OR 'in boiling/hot water' for high temperature IGNORE shift to blue side or pink side Examiner's Comments Candidates were expected to determine the type of energy change by linking their equilibrium equation in 2b(i) with the colour changes at different temperatures. Most candidates correctly concluded that the formation of a blue colour is endothermic. Many candidates did not explain this in terms of a shift in equilibrium position, considering bond breaking and bond making instead.
		Total	3	

			or of the second
	Total	3	
9 a	Ni: 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁸ 4s² √ Ni²⁺: 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁸ √	2	ALLOW 4s before 3d, ie 1s2 ² s2 ² p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸ ALLOW 1 ² written after answer prompt (<i>ie</i> 1s ² twice) ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ₈ ALLOW for Ni ²⁺ 4s0 DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ - there may be a mistake Examiner's Comments Most candidates knew the electron configuration of an Ni atom but the number knowing the electron configuration of the Ni ²⁺ ion was considerably fewer. The common error was the failure to remove the two 4s electrons.
Þ	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) All three reactions are covered in detail with C, D, E and F identified with clear explanations. There is a well-developed line of reasoning which is clear and logically structured with clear chemical communication and few omissions. The information presented is relevant and substantiated. Level 2 (3–4 marks) All three reactions are covered but explanations may be incomplete OR Two reactions are explained in detail. There is an attempt at a logical structure with a line of reasoning. The information is relevant e.g. formulae may contain missing brackets or numbers and supported by some evidence. Level 1 (1–2 marks) Make two simple explanations from any one reaction. 	6	Indicative scientific points may include:REACTION 1 (CuSO4/NH3) Product $C: [Cu(NH3)4(H2O)2]^{2+}$ Equation $[Cu(H2O)6]^{2+} + 4NH3 \rightarrow [Cu(NH3)4(H2O)2]^{2+} + 4H2O$ Structure of trans stereoisomer $\left[\begin{array}{c} H_{2}O \\ H_{3}N_{IIII} \\ H_{3}N_{IIII} \end{array} \right]^{2+} \\ H_{3}N_{IIIII} \\ H_{3}N_{IIIII} \\ H_{3}N_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
	OR		

	ple explanation from each of two reactions	REACTION 2 (Cu ₂ O/H ₂ SO ₄) Products
information is in	empt at a logical structure with a line of reasoning The n the most part relevant.	D : CuSO₄ OR [Cu(H₂O) ₆] ²⁺ E : Cu
0 marks	No response worthy of credit.	Equation
		$\begin{array}{l} Cu_2O \ + \ H_2SO_4 \rightarrow CuSO_4 \ + \\ Cu \ + \ H_2O \end{array}$
		Oxidation numbers
		$Cu(+1) \rightarrow Cu(+2) + Cu(0)$
		REACTION 3 (CuO/HNO ₃) Equation
		$\begin{array}{c} CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + \\ H_2O \end{array}$
		Molar ratios
		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		Formula of F
		CuH6N2O9 F : Cu(NO3) ² •3H2O (OR Cu(NO3)2(H2O)3)
		 Further guidance on use of wedges
		Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': For bond into paper, ALLOW : ''''''''''' ALLOW : ''''''''''''''''''''''''''''''''''''
		Examiner's Comments
		Many candidates had a stab at identifying C-F but neglected to include equations for the three reactions described or to show

relevant working.

Most candidates recognised **C** as the ammoniacal copper(II) ion but the formula was frequently incorrect and correct attempts at a ligand substitution equation from $[Cu(H_2O)_6]^{2+}$ was rarely seen. Diagrams showing the *trans* isomer were attempted but often of poor quality due to incorrect linking.

Candidates recognised **D** as being CuSO₄ but often did not identify **E** as Cu due to a lack of familiarity with this common disproportionation reaction. Cu(OH)₂(s) was a common incorrect identification of **E**. Only the best responses described the oxidation number changes which made this a disproportionation reaction.

F was identified by a percentage by mass calculation to determine an empirical formula and then by deduction to produce Cu(NO₃)₂.3H₂O. Having done this, many candidates did not give the relatively simple equation for reaction **3** between copper(II) oxide and dilute nitric acid.

Exemplar 2

				(d) Three different reactions of opper compounds are described below. Reaction 1: Aqueous copper(II) suffate reacts with storess aqueous conditions is formed, conditions to the suffate reaction and suffate reaction and the suffate reaction and suffate reaction and the
		Total	8	
1 0	а	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) A comprehensive conclusion using all data to obtain correct formulae for A, B, C and D AND optical isomers shown 	6	Indicative scientific points may include: 1. Formula of anhydrous complex B NiC ₆ N ₆ H ₂₄ C/ ₂ <i>Example of working</i> Ni : C : N : H : 0 = $\frac{18.95}{58.7}$: $\frac{23.25}{12.0}$: $\frac{27.12}{14.0}$: $\frac{7.75}{1.00}$: $\frac{2}{3}$
		There is a well-developed line of reasoning which is clear and logically structured with use of 3D structures for both optical isomers of C , use of wedges and bonding to N. The information presented is relevant and substantiated.		There may be other methods

Level 2 (3-4 marks) Reaches a sound conclusion for the formula of B AND obtains the correct formula of the hydrated complex A OR a 3D diagram of one optical isomer of cation C There is a line of reasoning and supported by some evidence. Calculations are clear and can be followed to obtain correct conclusions. 3D diagram, if present, should use wedges mostly correctly. Formula of A to show water separately or formula of C to show ligands separately, as appropriate. Level 1 (1-2 marks) Reaches a simple conclusion to obtain the correct formula of anhydrous complex **B OR** shows that **A** contains 2H₂O There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. Attempts more than one part of the problem. 0 marks No response or no response worthy of credit.

2. Formula of hydrated complex A NiC₆N₆H₂₄C/₂•2H₂O OR NiC₆N₆H₂₄Cl₂(H₂O)₂ Example of working

 $n(\text{anhydrous salt}) = \frac{7.433}{309.7} = 0.02400$ $n(\text{H}_2\text{O}) = \frac{0.864}{18.0} = 0.04800 \text{ (mol)} \checkmark$

There may be other methods

3. Formula of cation C

[NiC₆N₆H₂₄]²⁺ **OR** [Ni(H₂NCH₂CH₂NH₂)₃)]²⁺ (could be in structures 2+ charge can be shown on cation **OR** optical isomers (i.e. seen somewhere)

• Bidentate ligand D

H₂NCH₂CH₂NH₂ or displayed so that structure is clearly unambiguous.

Optical isomers

Accuracy of structures

Bonding shown from Ni to N of $H_2NCH_2CH_2NH_2$ ALLOW $CH_3CH(NH_2)_2$ for ligand For $H_2NCH_2CH_2NH_2$ in optical isomers,

ALLOW C-C without Hs and

						Each structure to contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': Ni Bond into paper can be shown as: ''''''''''''''''''''''''''''''''''''
						Examiner's Comments This was the second extended response question. Most candidates were able to make a start on this response and found the formula of B . A significant number of candidates assumed the bidentate ligand D to be H ₂ NCH ₂ CH ₂ NH ₂ and worked backwards to identify C . Having identified C , the drawing of optical isomers proved relatively straightforward.
						to determine the formula of A or realised quite late on within their extended response that this was required.
						ALLOW Cu(C/) ₄ ²⁻
		CuC l_4^{2-} OR [CuC l_4] ²⁻ \checkmark yellow solution				ALLOW Cu(OH) ₂ (H ₂ O) ₄
b	i			Cu(OH)₂ √ pale blue precipitate	5	Brackets required for [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺
		Cul √ white solid brown	l₂ √ n solution	[Cu(NH₃)₄(H₂O)₂] ²⁺ √ deep blue solution		NOTE: Take great care to check that subscripted numbers and brackets are correct
						Examiner's Comments The identification and recall of transition element compounds

				and ions was not done well. Most candidates knew the yellow solution to be $CuC/4^{2-}$ and the majority suggested the brown solution was I_2 . The formula of the blue precipitate $Cu(OH)_2$ was less well known and only a small minority were able to identify the deep blue solution and white solid as $[Cu(NH_3)_4(H_2O)_2]^{2+}$ and $Cu/$ respectively.
				ALLOW ligand exchange ALLOW reduction AND oxidation ALLOW precipitation
	i	Reaction 1: ligand substitution √ Reaction 2: redox √	2	Examiner's Comments Ligand substitution was well known but redox was less frequently seen. However, as reaction 2 formed a precipitate, precipitation was accepted as an alternative answer.
		Total	13	
1	i	\sim	1	ALLOW brackets around structure with negative charge outside, i.e. $\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & $
	i	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 1.61 × 10 ⁻³ award 2 marks $M = 418(.0) \text{ (g mol}^{-1}) \text{ OR } n(\text{Cr}) = 3.85 \times 10^{-6} \text{ (mol) } \checkmark$ Mass = $3.85 \times 10^{-6} \times 418.0 = 1.61 \times 10^{-3} \text{ g } \checkmark$	2	Note: $\frac{200 \times 10^{-6}}{52.0} = 3.85 \times 10^{-6}$ (at least 3 SF) ALLOW ECF from incorrect <i>M</i> OR <i>n</i> (Cr)

				ALLOW 3 SF up to calculator value correctly rounded
				For 5a(i)–(iv) IGNORE poor connectivity to SH groups
				Given in question
				Examiner's Comment: Most candidates calculated the amount of chromium correctly as 3.85×10^{-6} mol. The second mark required this value to be multiplied by the molar mass of the complex. Success here was dependent on obtaining the correct molar mass of 418 g mol ⁻¹ . Candidates scored better here than in 4(c)(i).
				Answer: 1.61 × 10 ^{−3} g
		Total	3	
1 2	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ √	1	
				IGNORE any outer electrons shown on Fe
	ii	 Fe]²⁺ [S S S]²⁻ Electrons for each S atom must be shown differently, e.g. • for left–hand S and × for right hand S Two 'extra' electrons shown with different symbol (as a square in diagram above) with one square on each S atom. 	2	Electrons donated by Fe must be different.
		MARKING 1 covalent bond between two S atoms with • AND × √		ALLOW dative covalent bond for covalent bond using two dots OR 2 crosses for 1st mark
		Rest of structure correct including 2 extra electrons √		2nd mark will then have the 2 extra electrons on the S atom that has donated the electrons for the dative covalent bond.

			Total	3	
					If there is an alternative answer, check to see if there is any ECF credit possible
1 3	а		$n(H_2O) = 27.55/18.0 = 1.5306 \text{ (mol)} \checkmark$ $n((NH_4)_2Fe(SO_4)_2) = 72.45/284.0 = 0.2551 \text{ (mol)} \checkmark$ whole number ratio of (NH_4)_2Fe(SO_4)2 : H ₂ O	3	ALLOW calculator value or rounding to two significant figures or more but IGNORE 'trailing zeroes' if wrong <i>M</i> produces such numbers throughout.
			= 0.2551 : 1.5306 = 1 : 6 OR x = 6 √		If no working, ALLOW 1 mark for $x = 6$.
	b	i	To neutralise acidic soil \checkmark	1	
			Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.		Indicative scientific points may include
			Level 3 (5–6 marks) Describes practical details of tests and observations that allows all four ions to be identified AND Attempts associated equations, with most correct. There is a well-developed line of reasoning and the method is clear and logically structured. The information presented is relevant and substantiated by observations from the tests described and practical details.		 Practical details: Sample stirred with water and mixture filtered. SO4²⁻, Fe²⁺, NH4⁺ tests on filtrate. CO3²⁻ test on residue or garden product
		i	 Level 2 (3–4 marks) Describes most practical details of tests including the observations that allows most ions to be identified AND Attempts associated equations, with some correct. There is a line of reasoning presented and the method has some structure. The information presented is in the most-part relevant and supported by some evidence of observations from the tests described but practical details may be absent. Level 1 (1–2 marks) Describes some of the practical details of tests and observations would only allow some ions to be identified. OR Attempts associated equations, with some correct. 	6	Tests and associated equations: $CO_3^{2^-}$ test: <i>Test:</i> Add nitric acid. <i>Observation:</i> effervescence. <i>Equation:</i> CaCO_3 + 2H ⁺ \rightarrow Ca ²⁺ + CO_2 + H ₂ O <i>ALLOW</i> CO_3^{2^-} + 2H^+ \rightarrow CO_2 + H ₂ O <i>OR</i> overall equation of CaCO_3 and an acid. $SO_4^{2^-}$ test: Add BaCl_2(aq)/Ba(NO_3)_2(aq)/Ba^{2^+}(aq). Observation: white precipitate. Equation: Ba ²⁺ + SO_4^{2^-} \rightarrow BaSO_4
			 supported by limited evidence of the observations, the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit. 		Fe ²⁺ test: Test: Add NaOH(aq) Observation: green precipitate

					Equation: $Fe^{2+} + 2OH_{-} \rightarrow Fe(OH)_{2}$ NH_{4}^{+} test: <i>Test:</i> Add NaOH(aq) and warm <i>Observation:</i> gas turns red litmus indicator blue <i>Equation:</i> $NH_{4}^{+} + OH^{-} \rightarrow NH_{3} + H_{2}O$
	с	i	Equation: Cu²+(aq) + 2OH⁻ (aq) → Cu(OH)₂(s) √ State symbols required Observation: Blue precipitate √	2	ALLOW [Cu(H ₂ O) ₆] ²⁺ (aq) + 2OH−(aq) → Cu(H ₂ O) ₄ (OH) ₂ (s) + 2H ₂ O(I) ALLOW blue solid
		i i	Coordinate/dative covalent bonds between protein and Cu ²⁺ /Cu \checkmark N atoms OR O atoms in protein donate electron pairs \checkmark	2	
			Total	14	
1 4		i	$[Co(H_2O)_6]^{2+} + 6NH_3 → [Co(NH_3)_6]^{2+} + 6H^2O \checkmark$ ligand substitution √	2	ALLOW ligand exchange
		i	$\begin{bmatrix} H_{3}N_{H_{3}} \\ H_{3}N_{H_{3}} \\ H_{3}N_{H_{3}} \\ H_{3}N_{H_{3}} \\ H_{3}N_{H_{3}} \end{bmatrix}^{2+} \\ Bond angle = 90^{\circ} \\ J = D \text{ Shape } \checkmark$ bond angle 90 ° \checkmark Bonds must be to N of NH ₃ ligands	2	IGNORE charges (anywhere) and labels (even if wrong) Square brackets NOT required Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': For bond into paper, ALLOW:
		i i i	Empirical formula of complex D Co : N : H : Cl $\frac{22.03}{58.9}$: $\frac{31.41}{14.0}$: $\frac{6.73}{1.00}$: $\frac{39.83}{35.5}$ OR 0.374 : 2.24 : 6.73 : 1.12 \checkmark	4	

		= 1 : 6 : 18 : 3 = $CoN_6H_{18}C_{/3} \checkmark$ complex ion C [Co(NH ₃) ₆] ³⁺ \checkmark complex D [Co(NH ₃) ₆] ³⁺ [Cl ⁻] ₃ \checkmark		Correct empirical formula subsumes previous mark
				ALLOW [Co(NH ₃) ₆] ³⁺ 3Cl ⁻
	i v	Half equations $[Co(NH_3)_6]^{2+} \rightarrow [Co(NH_3)_6]^{3+} + e^- \checkmark$ H ₂ O ₂ + 2e ⁻ → 2OH ⁻ √ Overall equation $2[Co(NH_3)_6]^{2+} + H_2O_2 \rightarrow 2[Co(NH_3)_6]^{3+} + 2OH^- \checkmark$	1	ALLOW multiples throughout ALLOW $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$
				ALLOW
				$2[Co(NH_3)_6]^{2*} + H_2O_2 + 2H^* \rightarrow 2[Co(N_3)_6]^{2*} + H_2O_2 + 2H^* \rightarrow 2[Co(N_3)_6]^{2*}$
		Total	11	
1 5	i	3 MnO ₄ ²⁻ + 4 H ⁺ \rightarrow 2 MnO ₄ ⁻ + MnO ₂ + 2 H ₂ O \checkmark	1	ALLOW 1 in front of MnO ₂
	i	In acidic conditions (Concentration of) H ⁺ increases AND equilibrium (position) shifts to the right to reduce concentration of H ⁺ /remove H ⁺ √ In alkaline conditions OH ⁻ reacts with H ⁺ AND equilibrium (position) shifts to the left to increase concentration of H ⁺ /add H ⁺ √	2	ALLOW $H^+ + OH^- \rightarrow H_2O$
		Total	3	
1 6	i	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁶	1	ALLOW 4s ⁰ before or after 3d, i.e. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ⁰ 3d ⁶ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ALLOW upper case D, etc and subscripts, e.g3D ₁₀

				IGNORE an extra 1s ² after prompt on answer line
		$FeCl_{4} \stackrel{\checkmark}{\checkmark}$ $\int Conc HCl(aq)$ $[Fe(H_2O)_6]^{3*}$ pale yellow solution $KI/I^{-} \stackrel{\checkmark}{\checkmark} {\longleftarrow} \stackrel{(H^{+})/MnO_{4} \stackrel{\frown}{\checkmark} \stackrel{\checkmark}{\checkmark}$ pale green solution $VaOH(aq)$ $Fe(OH)_{2}$ AND green precipitate $\stackrel{\checkmark}{\checkmark}$	4	Check correct 1- charge ALLOW brackets, e.g. [FeCl4] ⁻ For I ⁻ , ALLOW SO ₂ , (H ⁺)/Zn For MnO 4 ⁻ , ALLOW H ₂ O ₂ , (H ⁺)/Cr ₂ O7 ²⁻ , Cl ₂ For Fe(OH)₂ ALLOW Fe(OH) ₂ (H ₂ O) ₄
				For colour, ALLOW any colour that describes green
		Total	5	
				ALLOW +2 and -2 for charges
				Square brackets required
1		IGNORE any charges shown within complexes (treat as rough working) Complex ion C: [Ni(H₂O) ₆] ²⁺ ✓		ALLOW Ni(H ₂ O) ₄ (OH) ₂ (H ₂ O) ₄ and (OH) ₂ in any order IGNORE any square brackets
7	i	Solid D: Ni(OH)₂ ✓	3	Square brackets required
		Complex ion E: $[Ni(CN)_4]^{2-} \checkmark$		TAKE CARE for round brackets within complex ion, i.e. (H ₂ O), (OH) and (CN)
				Examiner's Comments
				The majority of candidates obtained all three marks. Where marks were lost, it was often for

			missing or incorrect charges (e.g. [Ni(CN)4] ²⁺), and poor use of brackets (e.g. Ni(OH ₂) and [NiCN4] ²⁺). Ni(OH) ₂ (H ₂ O) ₄ was often seen and was credited.
			For equations: IGNORE state symbol (even if wrong) Square brackets not required for Ni(OH) ₂
	Mark independently of 7(a)(i) ALLOW +2 and -2 for charges IGNORE any charges shown within complexes (treat as rough working) $Ni^{2+} + 2OH^- \rightarrow Ni(OH)_2 \checkmark$		ALLOW [Ni(H ₂ O) ₆] ²⁺ + 2OH ⁻ → [Ni(H ₂ O) ₄ (OH) ₂] + 2H ₂ O ALLOW [Ni(H ₂ O) ₆] ²⁺ + 2OH ⁻ → Ni(OH) ₂ + 6H ₂ O ALLOW NiSO ₄ (aq) + 2OH ⁻ (aq) → Ni(OH) ₂ (s) + SO ₄ ²⁻ (aq) ALLOW NiSO ₄ (aq) + 2KOH(aq) → Ni(OH) ₂ (s) + K ₂ SO ₄ (aq) ALLOW acid / base OR neutralisation OR deprotonation ONLY IF [Ni(H ₂ O) ₆] ²⁺ AND [Ni(H ₂ O) ₄ (OH) ₂] used ALLOW precipitate
i		4	ALLOW [Ni(H ₂ O) ₆] ²⁺ + 4KCN → [Ni(CN) ₄] ^{2−} + 6H ₂ O + 4K ⁺
	Type of reaction: precipitation \checkmark INDEPENDENT of equation $[Ni(H_2O)_6]^{2+} + 4CN^- \rightarrow [Ni(CN)_4]^{2-} + 6H_2O(I) \checkmark$		LOOK at formulae for E from 7(a)(i) (copied at bottom) ALLOW ECF in 7aii Equation for no round brackets around CN, i.e. [NiCN ₄] ²⁻ in 7a(i) This is the only ECF allowed from 7ai structures.
	Type of reaction: ligand substitution ✓ INDEPENDENT of equation		ALLOW ligand exchange
			Examiner's Comments
			Provided that correct formulae had been obtained in (a)(i), correct equations often followed, although marks were again lost by careless uses of charge and brackets, and unbalanced equations. The types of reaction were usually correct.
	Total	7	

1 a	Cu ²⁺ : (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ ✓ Cu ⁺ : (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ✓	2	IGNORE repeated 1s ² after 1s ² prompt on answer line ALLOW 4s ⁰ , either before or after 3d ALLOW upper case D, etc and subscripts, e.g3S ₂ 3P ⁶ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Examiner's Comments The responses seen were very mixed. Able candidates scored the two marks easily but many errors were seen, particularly by removal of 3d electrons rather than 4s electrons from copper atoms to give the electron configurations of the ions (especially for Cu ⁺ in Cul).
b	IGNORE any charges shown within formulae (treat as rough working) $CuCO_3 + 2HCOOH \rightarrow Cu(HCOO)_2 + H_2O + CO_2$ OR CuO + 2HCOOH → Cu(HCOO)_2 + H_2O OR Cu(OH)_2 + 2HCOOH → Cu(HCOO)_2 + 2H_2O ✓	1	IGNORE state symbols In formula of HCOOH / HCOO, ALLOW H, C and O in ANY order ALLOW H ₂ CO ₃ for H ₂ O and CO ₂ in carbonate equation ALLOW (HCOO) ₂ Cu for Cu(HCOO) ₂ DO NOT ALLOW equation with CuSO ₄ Examiner's Comments Most candidates attempted an equation using CuO, Cu(OH) ₂ or CuCO ₃ . Marks were then sometimes lost by not balancing the equation. It was not uncommon to see equations using CuSO ₄ or CuCl ₂ as reactant and consequently this mark was often not awarded.
с	2Cu ²⁺ + 4l ⁻ → 2Cul (s) + l ₂ \checkmark State symbol for Cul(s) ONLY required	1	ALLOW multiples, e.g. $Cu^{2+} + 2I$ $^- \rightarrow Cul(s) + \frac{1}{2}I_2$ IGNORE other state symbols, even if incorrect Examiner's Comments

г

			This equation proved to be much more difficult than in 8(b) , with only the best candidates producing a correctly balanced equation. As with 4(c) and 7(b)(iii) , equations were often unbalanced in terms of charge and oxidation number.
d	Starch ✓ Blue / black to colourless / white ✓ MARK INDEPENDENTLY	2	IGNORE 'brown' in composite colour with blue or black, i.e. ALLOW blue / brown to colourless ALLOW black / brown to colourless DO NOT ALLOW just 'it turns colourless / is decoloured' <i>Initial colour required</i> IGNORE clear for colourless Examiner's Comments Most candidates seemed unaware that starch is used to identify the end point in iodine– thiosulfate titrations. Even when starch was given, the colour change was often incorrect. Random responses were seen to this part, e.g. methyl orange, phenolphthalein, potassium manganate and sodium thiosulfate.
	WORKING REQUIRED Correct answer: x = 4 required evidence of working $n(S_2O_3^{2-})$ OR $n(Cu^{2^+}) = \frac{0.0420 \times 23.5}{1000} = 9.87 \times 10^{-4} \text{ (mol) } \checkmark$		FULL ANNOTATIONS MUST BE USED At least 3 SF required throughout
e	In 250.0 cm ³ solution, $n(Cu^{2+}) = 9.87 \times 10^{-3} \text{ (mol)} \checkmark$ $M(Cu(HCOO)_2 \cdot 4H_2O) = \frac{2.226}{9.87 \times 10^{-3}} = 225.5 \text{ (g mol}^{-1}) \checkmark$ $\mathbf{x}(H_2O)$ has mass of 225.5 - $M(Cu(HCOO)_2)$ = 225.5 - 153.5 $= 72(.0) \checkmark$ $\mathbf{x} = \frac{72(.0)}{18(.0)} = 4$	5	Alternative approach for final 3 marks based on mass: mass Cu(HCOO) ₂ = 9.87 × 10 ⁻³ × 153.5 = 1.515 g \checkmark $n(H_2O) = \frac{2.226 - 1.515}{18(.0)} = \frac{0.711}{18(.0)} = 0.$ $\mathbf{x} = \frac{0.0395}{9.87 \times 10^{-3}} = 4 \checkmark$
	WHOLE NUMBER needed		9.07 × 10

				ALLOW Cu(HCOO) ₂ •4H ₂ O
		AND evidence of working √		COMMON ERRORS for 4 marks x = 117 (calc 116.78) Use of 9.87×10^{-4} (no scaling \times $10) \rightarrow M = 2255.319$ x = 17 (calc 16.53) 4 marks Use of 4.935×10^{-4} (Use of $0.5 \times$ 9.87×10^{-3}) Check $n(Cu^{2+})$ for other ECFs Check for ECFs from incorrect M(anhydr salt) Actual = 153.5 Examiner's Comments Many candidates were on firm territory with a redox titration problem. The majority went through a well-rehearsed sequence of steps to obtain all five marks for showing that x was 4. Where '4' had not been obtained, marks could still be awarded for intermediate working if correct. Answer: $x = 4$
		Total	11	
1		IGNORE any charges shown within complexes (treat as rough working) Formulae 2 marks [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ✓		For charges, ALLOW +2 and -2 Square brackets required , i.e. DO NOT ALLOW Cu(NH ₃) ₄ (H ₂ O) ₂ ²⁺ ALLOW Ligands in any order ALLOW CuCl ₄ ²⁻ i.e. no brackets OR Cu(Cl) ₄ ²⁻
	а	[CuCl₄] ²⁻ ✓ Colours 1 mark blue AND yellow ✓ Mark independently of formulae	3	For CuCl4 ²⁻ , ALLOW green—yellow OR yellow—green DO NOT ALLOW green For [Cu(NH ₃)4(H ₂ O) ₂] ²⁺ DO NOT ALLOW pale blue, light blue DO NOT ALLOW precipitate with blue OR yellow

	Т				
					Examiner's Comments This question assessed complex ions of transition elements.
					Although a relatively gentle introduction to the paper, the question discriminated well.
					This question required knowledge and understanding of complex ions formed in ligand substitution reactions of aqueous Cu^{2+} ions. Well-prepared candidates usually collected the three marks with comparative ease. For the complex ions, common errors included $[Cu(NH_3)_6]^{2+}$ instead of $[Cu(NH_3)_4H_2O)_2]^{2+}$ and incorrect charges (e.g. $CuCl_4^-$). The
					observations were well known although green, rather than yellow, was often seen for CuCl4 ²⁻ .
					ALLOW lone pairs for electron pairs ALLOW molecule / atom / ion / substance for 'ligand' ALLOW dative (covalent) bonds for coordinate bonds ALLOW transition element for metal
	b	i	Donates two electron pairs to a metal ion / metal / Cu ²⁺ AND forms two coordinate bonds to a metal ion / metal / Cu ²⁺ √	1	Two is needed once only e.g. Donates two electron pairs to form coordinate bonds to a metal ion / metal / Cu ²⁺ Donates electron pairs to form two coordinate bonds to a metal ion / metal / Cu ²⁺
					DO NOT ALLOW donates two electron pairs to form one / a coordinate bond
					Examiner's Comments
					ions of transition elements. Although a relatively gentle introduction to the paper, the question discriminated well.
I					

		Most candidates obtained this mark in terms of donation by two electron pairs to a metal ion to form two coordinate or dative covalent bonds. Some candidates omitted donation, reference to a metal ion, or the formation of coordinate bonds.
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	3	FULL ANNOTATIONS MUST BE USED 2 marks: one for each correct isomer ✓ ✓ TAKE CARE: structures may be in different orientations and in different order IF BOTH isomers are 'correct', but O connectivity wrong, AWARD 1 mark for both structures Check H₂O ligands carefully for connectivity ALLOW H₂O reversed shown as - O₂H IGNORE charges (anywhere)

			ions of transition elements. Although a relatively gentle introduction to the paper, the question discriminated well. Candidates were required to draw accurate diagrams of stereoisomers of $[Cu(COO)_2(H_2O)_2]^{2-}$ and to classify these. The examiners were impressed with the accuracy of the diagrams seen. The inclusion of a 3D template and structure of one of the stereoisomers gave candidates a good indication of what was required. Unfortunately, marks were lost by showing the same stereoisomer twice, omitting O atoms from the COO^{2-} ligands or poor connectivity of the H ₂ O ligands. Many candidates did not identify one of the stereoisomers as being both <i>cis</i> and optical.
iii	CuC₄H₄O₁o ^{2–} Formula ✓ 2— charge ✓ MARK formula and charge INDEPENDENTLY	2	Empirical formula essential, e.g. DO NOT ALLOW Cu(COO) ₂ (H ₂ O) ₂ for formula mark ALLOW any order of elements in formula ALLOW – 2 for charge Examiner's Comments This question assessed complex ions of transition elements. Although a relatively gentle introduction to the paper, the question discriminated well. In the formula, the majority of candidates showed the correct 2– charge but many failed to show an empirical formula. The main problem was use of a structural formula instead of the empirical formula: CuC4H4O10. Candidates showing an empirical formula often omitted one of the ligand atoms, with C the commonest omission. The

					number of each atom also proved problematic, especially the O atoms.
			Total	9	
2 0	а	i	Fe²+: 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁶		ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW 1s ² written after answer prompt (<i>ie</i> 1s ² twice)
					ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ₁ ALLOW for Fe ²⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake
					Examiner's Comments
		i	Br ⁻ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ ✓	2	Few candidates produced two incorrect electron configurations but there were many mistakes seen for either species. For Fe ²⁺ , the commonest error was for loss of electrons from the 3d rather than 4s sub-shell of an Fe atom. For a Br ⁻ ion, it was common to see the electron configuration of a Br atom. Surprisingly a common error was to see 4p ⁴ rather than 4p ⁶ from loss rather than gain of an electron. Only just over half the candidates showed two correct configurations so clearly more care is needed when answering.
			With Cl ₂ AND Br ₂ AND I ₂ products are Fe ²⁺ (AND halide ion) FeCl ₂ AND FeBr ₂ AND FeI ₂ ✓		FULL ANNOTATIONS NEEDED ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants
		i	 OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe -0.44 AND Cl₂ +1.36 e.g. Iron has more / most negative electrode potential 	3	ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V
			With Cl ₂ AND Br ₂ , products are Fe ³⁺ (AND halide ion) FeCl ₃ AND FeBr ₃ ?		IGNORE comments about reducing and oxidising agents and electrons

			Examiner's Comments		
			The majority of candidates predicted that Fe would react with all three halogens to form Fe ²⁺ ions, supported by equations and electrode potential data. Many simply stated that Fe has the more negative <i>E</i> value (or the halogens the more positive value). It was also common to see cell voltages used, such as +0.98 V for a reaction between iron and iodine. Both approaches were credited. The most able candidates correctly predicted that Fe ²⁺ ions, initially formed from the reaction of iron with bromine and chlorine, would then be oxidised to Fe ³⁺ . The best answers showed exceptional understanding. Candidates are advised to consider all the information supplied in a question as the majority had ignored completely		
			the Fe ³⁺ /Fe ²⁺ data. ALLOW correct multiples throughout ALLOW equilibrium signs in all		
b	BOTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks 1st mark for ALL CORRECT species e.g.: $Fe^{2+} + NO_3^- + H^+ \rightarrow Fe^{3+} + NO + H_2O$ 2nd mark for CORRECT balanced equation $3Fe^{2+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3+} + NO + 2H_2O \checkmark \checkmark$	3	equations For 1st mark, IGNORE e⁻ present		
	3Fe ²⁺ + NO ₃ ⁻ + 4H ⁺ → 3Fe ³⁺ + NO + 2H ₂ O \checkmark Reaction 2: 1 mark [Fe(H ₂ O) ₆] ²⁺ + NO → [Fe(H ₂ O) ₅ NO] ²⁺ + H ₂ O \checkmark		Check carefully for correct charges Examiner's Comments This part required candidates to interpret unfamiliar information to construct reactions for redox and ligand substitution reactions. Marks were sometimes wasted		
					by incorrect balancing of equations or careless positioning of numbers. This part discriminated extremely well. For the redox equation, common mistakes were omission of species (such as H ⁺) failure to balance the redox reaction by charge (with the '3' balancing numbers for Fe ²⁺ and Fe ³⁺ being omitted) or inclusion of e ⁻ on one side of the equation. For the ligand substitution equation, H ₂ O was sometimes omitted on the right-hand side and careless positioning of numbers, such as (H ₂ O ₅) was sometimes seen. Candidates are recommended to check all species very carefully for any such slips.
-----	---	---	--	---	--
			Total	8	
2 1	a	i	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) √ NOTE: Metal ion not required as Ni ³⁺ is in the question	1	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds Examiner's Comments Most candidates obtained this mark in terms of donation by two electron pairs to form two coordinate or dative covalent bonds. Some candidates omitted donation or formed one coordinate bond only.
		i	C3H10N2 ✓	1	ALLOW in any order IGNORE structure Examiner's Comments Most candidates were able to identify the three bidentate ligands in C ₉ H ₃₀ N ₆ Ni ³⁺ and the

			correct response of $C_3H_{10}N_2$ was commonly seen. The question asked for a molecular formula and structural or other formulae were not credited. Weaker candidates often responded with $C_9H_{30}N_6$.
			ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			ALLOW H ₂ NCH ₂ CH(CH ₃)NH ₂ OR H ₂ NCH(CH ₂ CH ₃)NH ₂ ALLOW secondary or tertiary diamines or mixture
	MARK INDEPENDENTLY		IGNORE complex ion
	H2NCH2CH2CH2NH2 ✓		FOR other examples, CHECK with TL
i		2	Examiner's Comments
i			Most candidates were able to produce a diamine of $C_3H_{10}N_2$. A
	Each N OR each NH₂ OR amine group has a lone pair / electron pair OR lone pairs shown on N atoms in structure ✓		displayed or semi-displayed formula was the commonest response seen with propane-1,3- diamine being the commonest isomer seen (any possible diamine of $C_3H_{10}N_2$ was credited). The role of the two nitrogen atoms in providing the electron pairs was usually described, although examiners also credited this feature if seen in the structure.
			Examiner's Comments
i v	6 ✓	1	Most candidates responded correctly with a coordination number of 6 although there was the usual incorrect response seen of '3' from counting each bidentate ligand instead of the number of the coordinate bonds.
v	3–D diagrams of BOTH optical isomers required for the mark	1	In this part, Charge AND Square brackets NOT required
			IGNORE N or attempts to draw structure of bidentate ligand

		Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first
		Examiner's Comments
		In past sessions, candidates have been required to draw out stereoisomers and this question proved to be much more straightforward. Only the very weakest candidates were unable to complete the diagrams to provide two mirror image forms.
b	Quality of written communication Observation must be linked to the correct reaction REACTIONS OF AQUEOUS Cu^{2+}	2FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation2 $\frac{1}{2}$ 2 $\frac{1}{2}$ ALLOW [Cu(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow Cu(OH) ₂ (H ₂ O) ₄ + 2H ₂ OALLOW full or 'hybrid' equations, e.g. Cu ²⁺ + 2NaOH \rightarrow Cu(OH) ₂ + 2Na ⁺ [Cu(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow Cu(OH) ₂ + 6H ₂ OCuSO ₄ + 2NaOH \rightarrow Cu(OH) ₂ + Na ₂ SO ₄ ALLOW any shade of blue
		IGNORE initial precipitation of Cu(OH) ₂
	REACTION OF Co ²⁺ WITH excess NH₃(aq)	IGNORE [Cu(NH ₃) ₄] ²⁺
	Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O \checkmark$ Observation deep / dark blue (solution) \checkmark	$\begin{array}{c} \textbf{ALLOW} \text{ royal blue, ultramarine} \\ \text{blue or any blue colour that is} \\ \text{clearly darker than for} \\ [Cu(H_2O)_6]^{2+} \end{array}$
		DO NOT ALLOW deep blue precipitate for observation

		IGNORE mention of different concentrations of HCI
(aq)		ALLOW CuCl4 ²⁻ i.e. no brackets OR Cu(Cl)4 ²⁻ ALLOW [Cu(H ₂ O) ₆] ²⁺ + 4HCl \rightarrow
+ 6H₂O ✓	2	$[CuCl_4]^{2^-} + 6H_2O + 4H^+$ IGNORE $Cu^{2^+} + 4Cl^- \rightarrow CuCl_4^{2^-}$
,		ALLOW green-yellow OR yellow-green
		DO NOT ALLOW yellow precipitate for observation
		FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for Cu ²⁺ and some for Co ²⁺ ALLOW equilibrium signs in all equations IGNORE any incorrect initial
1		colours
ne correct reaction		IGNORE state symbols IGNORE an incorrect formula
2		for an observation
D ²⁺		
H(aq)		ALLOW [Co(H ₂ O) ₆] ²⁺ + 2OH ⁻ → Co(OH) ₂ (H ₂ O) ₄ + 2H ₂ O
ı₂(s) ✓		ALLOW full or 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$ $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$
		$CoSO_4$ + 2NaOH \rightarrow Co(OH) ₂ + Na ₂ SO ₄
		ALLOW any shade of blue IGNORE changes in colour over time
ess NH₃(aq)		IGNORE initial precipitation of Co(OH)2
s)6] ²⁺ + 6H₂O ✓		ALLOW any shade of brown or yellow
		DO NOT ALLOW brown / yellow precipitate for observation
(aq)		IGNORE mention of different concentrations of HCI

REACTION OF Cu²⁺ WITH HCI(aq)

Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O \checkmark$

Observation yellow (solution) \checkmark

Quality of written communication Observation must be linked to the correct **reaction**

REACTIONS OF AQUEOUS Co²⁺

REACTION OF Co²⁺ with NaOH(aq)

Correct balanced equation $Co^{2+}(aq) + 2OH^{-}(aq) \rightarrow Co(OH)_2(s) \checkmark$ state symbols **not** required

Observation blue precipitate / solid √

REACTION OF Co²⁺ WITH excess NH₃(aq)

Correct balanced equation $[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O \checkmark$

Observation brown / yellow (solution) ✓

REACTION OF Co²⁺ WITH HCI(aq)

Correct balanced equation

 $[\text{Co}(\text{H}_2\text{O})_6]^{2+} + 4\text{Cl}^- \rightarrow [\text{Co}\text{Cl}_4]^{2-} + 6\text{H}_2\text{O}\checkmark$

Observation blue (solution √ ALLOW $CoCl_4^{2-}$ i.e. no brackets OR $Co(Cl)_4^{2-}$ ALLOW $[Co(H_2O)_6]^{2+} + 4HCl \rightarrow$ $[CoCl_4]^{2-} + 6H_2O + 4H^+$ IGNORE $Co^{2+} + 4Cl^- \rightarrow CoCl_4^{2-}$

ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation

Examiner's Comments

This question assessed knowledge and understanding of precipitation and ligand substitution reactions of transition metal ions. The question discriminated extremely well between well-prepared and poorly-prepared candidates. The well-prepared often collected the full six marks with comparative ease. However, marks were sometimes squandered by incorrect balancing of equations (e.g. formation of 2H₂O rather than 4H₂O with NH₃), careless positioning of numbers (such as $Cu(OH_2)$ and $[Cu(H_2O_6)]^{2+}$) or omission of charges (such as [Cu(NH₃)₄(H₂O)₂]). The observations were very well known with yellow, rather than green, usually seen for CuCl42-. It was sad to see the responses of poorly-prepared candidates that had clearly been invented in the exam. Often these scored no marks or perhaps one for remembering that copper(II) hydroxide is a blue precipitate. Cobalt tended to be the choice of weaker candidates. Some candidates mixed and matched between copper and cobalt and this approach was fully credited.

For precipitation, the specification allows a simple equation in terms of $Cu^{2+}(aq)$ rather than complex ions. It was relatively common to see an equation for the precipitation reaction of $[Cu(H_2O)_6]^{2+}$ with hydroxide ions forming

PhysicsAndMathsTutor.com

				$[Cu(OH)_2(H_2O)_4]$ and this approach gained full credit if the equations were correctly balanced. The two equations for ligand substitution required complex ions throughout. It should be noted that the specification requires the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2+}$ and the simpler representation of $[Cu(NH_3)_4]^{2+}$ was not credited. $[Cu(NH_3)_6]^{2+}$ was a common incorrect complex ion seen.
		Total	12	
				ALLOW multiples ALLOW oxidation half equation for two marks $Fe_2O_3 + 10OH^- \rightarrow 2FeO_4^{2^-} +$ $5H_2O + 6e^-$ Correct species would obtain 1 mark - question: equation for oxidation ALLOW variants forming H ⁺ for 1 mark, e.g: $Fe_2O_3 + 3Cl_2 + 5OH^- \rightarrow 2FeO_4^{2^-}$ $+ 6Cl^- + 5H^+$ $Fe_2O_3 + 3Cl_2 + 5OH^- \rightarrow 2FeO_4^{2^-}$ $+ 5HCl^- + Cl^-$
				Examinar's Commonto
2	a	$Fe_2O_3 + 3CI_2 + 100H^- \rightarrow 2FeO_4^{2-} + 6CI^- + 5H_2O \checkmark$ First mark for all 6 species Second mark for balancing	2	Examiner's Comments The information needed to write the equation was largely within the information provided for step 1. In step 1, candidates were provided with three reactants and two of the products. They were also told that the reaction was carried out using an excess of hydroxide ions, so any potential H ⁺ ions produced would be neutralised to water. Only the very best candidates were able to interpret this information to score both marks for the correct equation. Many attempts seen did not start with iron(III) oxide. When arriving at a complete equation, candidates are recommended to check the overall charge on either side. This must balance, a feature not seen in the majority of

b	$Ba^{2+}(aq) + FeO_{4}^{2-}(aq) \rightarrow BaFeO_{4}(s) \checkmark$	1	responses. One mark was available for an equation with all species correct, including water as the third product, or a 'correct' equation but with H ⁺ produced. Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or -2 for ionic charges Examiner's Comments As with 8(a), the relevant information was mostly included within the referenced part: step 2. The responses were very disappointing as the required
			equation is very similar to a simple precipitation reaction between silver and halide ions. The requirement for state symbols was clearly stated but often omitted from otherwise correct equations. IGNORE H ⁺ OR acidified ALLOW iodide / potassium iodide but DO NOT ALLOW iodine ALLOW I ⁻ loses electrons AND to form I ₂
c	Reason can ONLY be correct from correct reducing agent 	2	ALLOW Fe(6+) OR Fe ⁶⁺ Examiner's Comments The majority of candidates identified iodide ions or potassium iodide as the oxidising agent. Iodine was often recognised as the product but the explanation was usually in terms of oxidation number despite the question asking for electrons – very much a case of reading the question. Precise language was also required as iodine and iodide are rather different, especially as iodine is the product. The best responses

		discussed the species being reduced, BaFeO4 or Fe(VI).
		FULL ANNOTATIONS MUST BE USED
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 51.8%, award 4 marks.	 For alternative answers, look first at common ECFs below. Then check for ECF credit possible using working below IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step
	$n(S_2O_3^{2^-}) \text{ used } = 0.1000 \times \frac{26.4}{1000} = 2.64 \times 10^{-3} \text{ (mol) } \checkmark$	This mark may be seen in 2 steps via I ₂ but the mark is for both steps combined
d	$n(\text{FeO}_{4^{2^{-}}}) = \frac{1}{2} \ge \frac{2}{3} \ge 2.64 \ge 10^{-3} = 8.8(0) \ge 10^{-4} \pmod{\sqrt{3}}$	4 4 $answer above \times 100$
	Mass BaFeO ₄ in sample = $8.8 \times 10^{-4} \times 257.1 \text{ g} = 0.226248 \text{ g} \checkmark$ % purity = $\frac{0.226248}{0.437} \times 100 = 51.8\% \checkmark$	ECF 0.437 ALLOW 51.7% FROM 0.226 g BaFeO4 (earlier rounding)
	MUST be to one decimal place (in the question) As an alternative for the final two marks, ALLOW: Theoretical amount of BaFeO ₄ = $\frac{0.437}{257.1}$ = 0.00170 (mol) \checkmark % purity = $\frac{8.8 \times 10^{-4}}{1.70 \times 10^{-3}} \times 100 = 51.8\% \checkmark$	 Common ECFs: No × 2/3 for <i>n</i> (FeO4 ²⁻): % purity = 77.7%/77.6% 3 marks No ÷ 2 for <i>n</i> (FeO4 ²⁻): % purity = 25.9% 3 marks 24.6 used instead of 26.4: % purity = 48.2% 3 marks
		Examiner's Comments
		After the information-finding demands of parts (a)–(c), candidates were on much firmer territory here with a stock redox titration problem. Many candidates secured all 4 marks and most were able to obtain some marks along the way. The

				hardest mark was the step from the initial amount of Na ₂ S ₂ O ₃ to the amount of BaFeO ₄ . Answer: 51.8%
				DO NOT ALLOW names IGNORE a balancing number shown before a formula
				ALLOW Fe(OH) ₃ (H ₂ O)3
	e	gas: $O_2 \checkmark$ precipitate: Fe(OH) ₃ \checkmark equation: 2FeO ₄ ²⁻ + 5H ₂ O \rightarrow 1½O ₂ + 2Fe(OH) ₃ + 4OH ⁻ OR 2FeO ₄ ²⁻ + H ₂ O + 4H ⁺ \rightarrow 1½O ₂ + 2Fe(OH) ₃ \checkmark	3	ALLOW multiples ALLOW $2FeO_4^{2^-} + 11H_2O \rightarrow 1\frac{1}{2}O_2 + 2Fe(OH)$ Examiner's Comments This part required candidates to construct an equation for an unfamiliar reaction. Candidates were reasonably competent in identifying the gas as O_2 and precipitate as $Fe(OH)_3$. Unfortunately, some responded with 'oxygen' despite the formulae being asked for in the question. The correct equation proved to be the hardest mark on the paper, being seen extremely rarely. As with the equation in 8(a), often the overall charge didn't balance on either side of the equation, a consideration that would have led to many more
		Total	12	correct responses.
23	а	(Transition element) has an ion with an incomplete / partiallyfilled d sub-shell / d-orbital ✓ Scandium / Sc and zinc / Zn are not transition elements ✓	6	FULL ANNOTATIONS MUST BE USED ALLOW capital 'D' within definition DO NOT ALLOW d shell ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements
		Electron configurations of ions Sc ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓		This can be from anywhere in the overall response in terms of

Sc, Sc³⁺, Zn, Zn²⁺ **OR** incorrect charges, i.e. only Sc⁺, Sc²⁺, Zn⁺

In electron configurations, **IF** subscripts **OR** caps used, **DO NOT ALLOW** when first seen but credit subsequently

ALLOW 4s⁰ in electron configurations IGNORE [Ar] IGNORE electron configurations for other Sc and Zn ions

ALLOW for Sc³⁺: Sc forms a 3+ ion; ALLOW Sc⁺³ ALLOW for Zn²⁺: Zn forms a 2+ ion; ALLOW Zn⁺²

ALLOW Sc³⁺ has no d sub-shell DO NOT ALLOW 'd sub-shell is incomplete' *(in definition)*

DO NOT ALLOW 'd sub-shell is incomplete' (*in definition*)

Examiner's Comments

The position of scandium as zinc and d-block elements that are not transition elements has been rarely assessed and some candidates had clearly not learnt this part of the specification. The examiners required a standard definition of a transition elements and an explanation of why scandium and zinc do not comply with this definition in terms of the electron configurations of the Sc³⁺ and Zn²⁺ ions and the empty and full d sub-shell of these two ions respectively. The wellprepared easily collected all 6 marks but it was sad to see marks wasted by responses that were clearly being made up during the examination (often in terms of any of the d- block elements in Period 4). Reasons for not obtaining marks included a definition in terms of elements

Sc³⁺ AND d sub-shell empty / d orbital(s) empty \checkmark Note: Sc³⁺ must be the ONLY scandium ion shown for this mark

Zn²⁺ AND 1s²2s²2p⁶3s²3p⁶3d¹⁰ ✓

Zn²⁺ **AND** d **sub-shell** full / **ALL** d-orbitals full \checkmark **Note**: Zn²⁺ must be the **ONLY** zinc ion shown for this mark

as an electron pair d commonest omission	
	was the ond
i i Square brackets AN required DO NOT ALLOW are included within square DO NOT ALLOW are included within square i I ALLOW [Co(C2H8N2]] + √ 1 ALLOW [Co(C2H8N2]] + √	-

			OR mixture of the above (as long as unambiguous)
			IGNORE [Co(en) ₂ Cl ₂] ⁺ <i>simplifies question</i>
			Within formula, ALLOW (Cl) ₂ , (Cl ₂)
			ALLOW CO Within the context of the question, CO is Co
			Examiner's Comments
			Success depended on a systematic approach with both the number of ligands and the overall charge. The examiners did not allow formulae containing charges within the required square brackets as collectively the overall charge displayed would then be wrong. The commonest error seen was an incorrect overall charge, either as – or as 3+.
			Examiner's Comments
i i	6√	1	Most candidates responded correctly with a coordination number of 6 although there was the usual incorrect response seen of '4' from counting each ethanediamine ligand just once.
i v	$IF NH_2 shown without Hs, e.g. N, penalise first time ONLY II for the formula of the formula o$	3	FULL ANNOTATIONS MUST BE USED

		TAKE CARE: structures may be in different orientations. For H ₂ NCH ₂ CH ₂ NH ₂ , ALLOW NH ₂ H ₂ N (connectivity within 'loop' only) If Cl ₂ s are shown instead of Cl, penalise 1st time only Examiner's Comments This type of question has been encountered on previous papers and candidates were generally comfortable with drawing stereoisomers.
		The examiners did require the connecting amine groups to be shown including bonding from the N atoms to the metal ion to full credit. Intermediate marks were available if H atoms or NH ₂ groups had been omitted. In general, candidates displayed 3D diagrams very competently using 'in' and 'out' wedges. Some candidates did manage to repeat the <i>trans</i> isomer once or even twice. Most candidates displayed the cis optical isomers as clear mirror images and this strategy is recommended. A few candidates instead chose to rotate the whole structure and whether the second diagram was a different optical isomer or the same structure rotated was then largely down to luck.
C i $Fe^{2+} / Fe(II)$ essential for 1st marking point	2	ASSUME that 'it' refers to oxygen ALLOW O ₂ binds to Fe ²⁺ OR O ₂ donates electron pair to Fe ²⁺ OR O ₂ is a ligand with Fe ²⁺ IGNORE O ₂ reacts with Fe ²⁺ OR

			O ₂ is around Fe ²⁺
	(When required,) O ₂ substituted OR O ₂ released √ <i>Fe</i> ²⁺ <i>not required for 2nd marking point (e.g. IGNORE Fe)</i>		ALLOW bond to O ₂ breaks when O ₂ required OR H ₂ O replaces O ₂ OR vice versa ALLOW CO ₂ replaces O ₂ OR vice versa ALLOW O ₂ bonds / binds reversibly
			Examiner's Comments
			The majority of candidates secured one of the available two marks for describing ligand substitution between O_2 and either H_2O or CO_2 . The second mark required a specific reference to the role of Fe^{2+} ; this was often omitted with responses instead predominately discussing the role of haem or iron.
			ALLOW expression without state symbols (given in question)
	(HbO ₂ (aq)]		Examiner's Comments
i	$(\mathcal{K}_{stab} =) \frac{[HbO_{2}(aq)]}{[Hb(aq)] [O_{2}(aq)]} \checkmark$ ALL Square brackets essential	1	As with 3(a) the K_{stab} expression was shown correctly by almost all candidates, the only mistakes being the very occasional inverted expression or use of "+" within the denominator.
			IGNORE (complex with) CO is more stable
i i i	 Both marks require a comparison Stability constant / K_{stab} value with CO is greater (than with complex in O₂) ✓ (Coordinate) bond with CO is stronger (than O₂) 	2	ALLOW bond with CO is less likely to break (than O ₂) OR CO is a stronger ligand (than O ₂) OR CO has greater affinity for ion
	OR CO binds more strongly ✓		/ metal / haemoglobin (than O ₂)
			/ metal / haemoglobin (than O ₂) ALLOW CO bond formation is irreversible OR CO is not able to break away

					OR CO complex forms more easily
					Examiner's Comments The majority of candidates obtained both marks by following the cues in the question for an explanation in terms of CO having a greater bond strength and higher stability constant than O ₂ with haemoglobin.
			Total	18	5
2 4	a	i	1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s ¹ ✓	1	ALLOW upper case S, P and D and subscripts, e.g3S ₂ 3P ₆ 3D ₁₀ ALLOW 4s ¹ before 3d ¹⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ , i.e. DO NOT ALLOW [Ar]3d ⁸ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake
		i	$n = \frac{95.0}{24000} = 3.96 \times 10^{-3} \text{ (mol)} \checkmark$ Calculation of M $M = \frac{m}{n} = \frac{254 \times 10^{-3}}{3.96 \times 10^{-3}} = 64.2 \text{ OR } 64.1 \text{ (g mol}^{-1}) \checkmark$ Gas: sulfur dioxide OR SO ₂ \checkmark Equation Cu + 2H ₂ SO ₄ \rightarrow CuSO ₄ + SO ₂ + 2H ₂ O \checkmark	4	IF there is an alternative answer, check to see if there is any ECF credit possible using working below Unrounded values give 64.2; Rounded to 3 SF gives 64.1 ALLOW $Cu + 2H^+ + H_2SO_4 \rightarrow CU^{2+} + SO_2$ $+ 2H_2O$
	b	i	green solution: $Fe^{2+}(aq) \mathbf{OR} [Fe(H_2O)_6]^{2+}$ AND gas bubbles: $H_2(g)$ AND orange-brown solution: $Fe^{3+}(aq) \mathbf{OR} [Fe(H_2O)_6]^{3+} \checkmark$ $Fe(s) + 2H^+(aq) \rightarrow Fe^{2+}(aq) + H_2(g) \checkmark$ $4Fe^{2+}(aq) + O_2(g) + 4H^+(aq) \rightarrow 4Fe^{3+}(aq) + 2H_2O(I) \checkmark$	3	State symbols are not required in this part IGNORE , even if incorrect ALLOW full equation: $Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$

		i	orange solution: $Cr_2O_7^{2-}$ AND green solution (anywhere) Cr^{3+} OR $[Cr(H_2O)_6]^{3+}$ \checkmark $2Cr^{3+}(aq) + H_2O(I) + 3H_2O_2(aq) \rightarrow Cr_2O_7^{2-}(aq) + 8H^+(aq) H^+, H_2O \text{ and } e^- \text{ all } cancelled \checkmark \checkmark$	3	State symbols are not required in this part IGNORE , even if incorrect IGNORE Cr(VI) <i>The question asks for species</i> ALLOW 1 mark for H ⁺ /H ₂ O/e ⁻ not cancelled, e.g. 2Cr ³⁺ (aq) + 7H ₂ O(I) + 3H ₂ O ₂ (aq) + 6H ⁺ (aq) \rightarrow Cr ₂ O ₇ ²⁻ (aq) + 14H ⁺ (aq) + 6H ₂ O(I) \checkmark
			Total	11	
25	а		Cr: $(1s^22s^22p^6)3s^23p^63d^54s^1$ Cr ³⁺ : $(1s^22s^22p^6)3s^23p^63d^3$	2	ALLOW 4s before 3d, ie $1s^22s^22p^63s^23p^64s^{1}3d^5$ ALLOW $1s^2$ written after answer prompt (<i>ie</i> $1s^2$ twice) ALLOW upper case D, etc and subscripts, e.g4S ₁ 3D ₅ ALLOW for Cr ³⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for $1s^22s^22p^63s^23p^6$ Look carefully at $1s^22s^22p^63s^23p^6$ – there may be a mistake.
	d		Formula of complex ion J Structures show correct ligands (4 NH ₃ AND 2 Cl) AND 1+ charge (on at least one structure) Stereoisomers H ₃ N////, H ₃ N/////, H ₃ N////, H ₃ N/////, H ₃ N//////, H ₃ N////////////////////////////////////		FULL ANNOTATIONS MUST BE USED For two stereoisomer marks, IGNORE charges (anywhere) Charge already credited within the 1st mark. Square brackets NOT required Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': For bond into paper, ALLOW:

		TAKE CARE: structures may be in different orientations.		ALLOW following geometry throughout:
		A: Cr ₂ (SO ₄) ₃ B: Mnl ₂		Formulae required in question IGNORE incorrect names
c	; i	State symbols not required in equations (within observations). C : $Cr^{3+} + 3OH^- \rightarrow Cr(OH)_3$ D : $[Cr(H_2O)_6]^{3+} + 6NH_3 \rightarrow [Cr(NH_3)_6]^{3+} + 6H_2O$ E : $Mn^{2+} + 2OH^- \rightarrow Mn(OH)_2$ F : $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$ G : $Ag^+ + I^- \rightarrow AgI$	7	IGNORE incorrect state symbols ALLOW [Cr(H ₂ O) ₆] ³⁺ + 3OH ⁻ → Cr(OH) ₃ (H ₂ O) ₃ + 3H ₂ O ALLOW Cr(OH) ₃ (H ₂ O) ₃ + 6NH ₃ → [Cr(NH ₃) ₆] ³⁺ + 3H ₂ O + 3OH ⁻ ALLOW [Mn(H ₂ O) ₆] ²⁺ + 2OH ⁻ → Mn(OH) ₂ (H ₂ O) ₄ + 2H ₂ O
	i	removes / reacts with carbonate / CO ₃ ²⁻ AND carbonate forms a (white) precipitate	1	Both statements required for the mark Note: 2nd statement can be for Test 2 (Ba ²⁺) OR Test 3 (Ag ⁺)
	i i	Test 2: no difference Test 3 gives a white precipitate by reaction with C/ ⁻ A: white precipitate AND B: white / yellow ppt OR cream ppt OR paler yellow ppt	3	
	i v	Add concentrated ammonia / NH ₃ AND yellow precipitate does not dissolve	1	Concentrated essential for NH ₃
		Total	17	